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SUMMARY 

A numerical procedure for solving the time-dependent, incompressible Navier-Stokes equations is presented. 
The present method is based on a set of finite element equations of the primitive variable formulation, and 
a direct time integration method which has unique features in its formulation as well as in its evaluation 
of the contribution of external functions. Particular processes regarding the continuity conditions and the 
boundary conditions lead to a set of non-linear recurrence equations which represent evolution of the 
velocities and the pressures under the incompressibility constraint. An iteration process as to the non-linear 
convective terms is performed until the convergence is achieved in every integration step. Excessively artificial 
techniques are not introduced into the present solution procedure. Numerical examples with vortex shedding 
behind a rectangular cylinder are presented to illustrate the features of the proposed method. The calculated 
results are compared with experimental data and visualized flow fields in literature. 

KEY WORDS Incompressible Navier-Stokes Equations Finite Element Method Direct Time 
Integration Method Vortex Shedding Behind an Obstacle 

INTRODUCTION 

The Navier-Stokes equations for viscous incompressible fluids possess difficulties in solving them 
due to the non-linear convective terms as well as the incompressibility constraint imposed by 
the continuity equation. Since exact solutions of these equations are restricted to idealized cases, 
numerous researches have been devoted to the development of efficient and accurate numerical 
methods. The finite element method has received remarkable attention in this field because of 
a considerable potential for versatile solution procedures.',' Such potential originates in its ease 
in handling very complex geometries and the ability to naturally incorporate differential-type 
boundary conditions. Among available combinations of the solution variables, the methods using 
primitive variables are considered important primarily because these variables are more physical, 
have lower order equations, and this form of equations provides a relatively straightforward 
extension to three dimensions. However, the difficulties involved in the basic equations are still 
retained in the primitive variable approaches. 

Important achievements regarding the development of solution procedures have been focused 
on the following issues: (i) acceptable spatial discretization in mixed  interpolation^,^-'^ (ii) proper 
treatments for handling the incompressibility constraint,' '-I5 (iii) efficient methods for the 
convection operators'"20 and (iv) accurate and efficient time integration  algorithm^.^'-^^ On 
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each of these issues, a number of numerical techniques have been proposed in the literature (among 
which only typical researches are mentioned above), where various controversial viewpoints still 
remain inconclusively. Such a situation must be due to the complexity of the objective problems 
where an adopted numerical technique in addressing one of those issues may restrict or affect the 
characteristics of the techniques employed for the other issues. For instance, the properties of the 
time integration scheme cause considerable effects on the algorithm to impose the incompressi- 
bility constraint, or on the treatment of the non-linear terms. In this case, the accuracy, the stability, 
or the computational efficiency of a solution procedure are rather dependent upon synthesized 
characteristics of the solution algorithm. 

The present paper is devoted to describe a solution procedure of the time-dependent, 
incompressible finite element Navier-Stokes equations of the primitive variable formulation. 

A direct time integration method developed by the  author^^^,^' is applied to the integration of 
the finite element equations which are derived via the conventional Galerkin finite element 
method. The integration method has unique features in its formulation as well as in its evaluation 
of the contribution of external functions. An attempt to impose the continuity conditions leads to a 
set of non-linear recurrence equations which represent evolution of the velocities and the pressures 
under the incompressibility constraint. As for the non-linear terms, an iterative process is 
performed until the convergence is achieved in every integration step. 

Excessively artificial techniques are not introduced throughout the constitution of the present 
solution procedure. As a consequence, relatively complicated computational processes may be 
needed to implement the present solution procedure. However, the obtained solution procedure 
can start only specifying the physical data which can be prescribed from the conditions of the 
objective problems. 

The accuracy of the proposed procedure is verified by comparing the numerical results of flows 
around a rectangular cylinder with experimental data in the 

THE FINITE ELEMENT EQUATIONS 

The conventional Galerkin finite element spatial discretization of the Navier-Stokes equations 
and the continuity equation leads to the following systems of coupled ordinary differential 
equations (cf., for instance Reference 1). 

The equations of motion: 
du MU + KU + KU + K,P = f; u = - 
dt ’ 

The equations of continuity: 

K ; ~ u  = 0, (2) 
where u, p and f are the vectors of the nodal velocities, the pressures and the nodal forces, 
respectively. M, R = fi(u), K and K, are the coefficient matrices with respect to the density, the 
convection, the viscosity and the gradient operator. These matrices can be written in terms of 
the velocity interpolation function N, and the pressure interpolation function N, as follows: 

M = [jQpN6N,dQ, a = SjQpNJ(’(N,.)’)’N,,dn; (3% b) 
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where SZ denotes the objective domain. The boundary of i2 is divided into r, and I-,, where the 
velocities and the tractions t are prescribed, respectively. p denotes the density and b the vector 
of the body forces. The other symbols denote: 

2 
" N  

L =  I 

in which p is the coefficient of viscosity. 
In equations (1) and (2), the boundary conditions are incorporated in the vectors u and f as 

u = ( ( U y  (iiP)T)T, (54  

f = ( ( P ) T  ( f@)T)T,  (5b) 
where the superposed bar denotes the prescribed components. f P is the vector of reaction 
components on T,. 

In the present study, the ordinary triangular element with linear interpolation function is used 
for the velocity field and the pressure is assumed to be constant in each element. If the objective 
domain can be subdivided into quadrilateral subdomains, a quadrilateral element with one 
pressure variable, which can be obtained by averaging four triangular elements, will be preferred 
because of better property with respect to effects of element orientation. 

A TIME INTEGRATION METHOD O F  FIRST-ORDER INITIAL 
VALUE PROBLEMS 

As the basis of the present solution procedure, a direct time integration method has been developed 
by the  author^'^^^^ to solve the initial value problems of the following first-order matrix ordinary 
differential equations 

Mu + Ku = r, 

where r denotes known external functions of the time t, and the coefficient matrix M is 
assumed to be symmetric and definite. 

The initial conditions for (6) are: 

(6) 

u=uo ,  at t =O. 

The formulation of the integration method is described in the following. 
(7) 

A variational functional corresponding to the initial value problem 

By introducing new variables cp in terms of which the objective solution variables u are defined as 

u = M-'( - MT@ + KTcp), (8) 
the objective initial value problem of equations (6) and (7) can be transformed into a boundary 
value problem of the following second-order equations: 

- M@ + (KT - K)@ + KM-'KTcp = r, 0 < t < T ,  (9) 
where T denotes the end of the objective time domain. 
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The following is an extremum statement equivalent to (9): 
P T  

'II = J [$( - MT@ + K'r(p)TM-'( - MT@ + KTq) - qTr]dt - [qTh];, 
0 

in which h is the vector of natural variables corresponding to q. 
Under the following essential boundary conditions at t = T: 

= 0, at t = T,  (1 1) 

the stationary condition of the functional 71 (10) leads to two sets of the Eulerian equations. One 
set of them coincides with (9) and the other is the following natural boundary conditions at 
t = 0: 

-M@+KTq+h=O,  at t = 0 .  (12) 

h =  -Mu= -Mu,. (13) 

According to the definition of (8), equation (12) can be rewritten as follows: 

It can be understood that equation (1 3) corresponds to the initial conditions (7). 

Application of the finite element technique 

The objective time domain 0 < t < T is subdivided into a number of subdomains ti < t < 
= ti + At), and essential parameters pi ( = qIt=,J are introduced at the nodal time instant 

When the integral of the functional n (10) is evaluated using the following linear interpolation 

ti+ 
ti (cf. Figure 1). 

within a subdomain ti d t 6 t i+ = ti + At) 

L J  JJ 
where J denotes a diagonal matrix, the stationary condition of the resulting expression of 
K leads to the following relationship between essential parameters qi and natural parameters 
hi( = - Mui) for a typical time interval ti d t d ti + 

t ,  143, 9t.l ti*1 

Figure I .  Discretization of the time domain: nodal parameters and equivalent nodal loadings 
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where the submatrices Aij can be given as follows: 

At 1 
3 At 

At 1 
6 At 

A l l  =-KM-lKT+$(KT+K)+-M, 

A,, = -KM-'KT + +(KT - K) - -M, 

A,, = AT,, 

At 1 
3 At 

A,, = -KM-lKT - $(KT + K) + -M. 

The vectors ri,i+ and ri+ l , i  are the equivalent nodal loadings which result from the weighted 
integral of the external functions r. Assuming that the functions r are piecewise linear within an 
interval t i  < t < t i+  , as shown in Figure 1, and ri+ l , i  can be given as 

At 
6 ri,i+ = -4% + r i+  ,I, 

At 
6 r i+  = -(ri + 2ri+ 1), 

where ri = rlt=ti. 

A step-by-step time integration formula 

When the foregoing single subdomain t i  < t < t i+  ( = t i  + At) is regarded as the objective 
integration time domain 0 < t < T ,  the essential boundary conditions (11) correspond to the 
following conditions: 

q i + l = O ,  a t t = t i + l .  (18) 

Imposing (1 8) on (1 5) yields a recurrence relationship from ti to ti  + , of the objective variables u as 
follows: 

At At 
A, pi = Mui + -Ti + -ri + ,, 

Mui+l =-ri+-ri+,  - - A 2 , q i ,  

3 6  

At At 
6 3  

where At is now the integration interval. 
One step of the time integration consists of the following two processes. First, the variables qi 

can be obtained by solving (19a) under the previous values ui and the loading terms ri and r i +  1. 
Secondly, the objective variables u i + l  can be given by solving (19b) under qi, ri and 

Characteristics of the time integration method 

present integration scheme: 
The following single variable system is dealt with as an example to verify the performance of the 

3 + mu = c; o, c = const. (20) 
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Figure 2. Characteristics of the present direct integration method (a) characteristic function of the integration operator 
(compared to some conventional schemes); (b) characteristic of approximated external function 

The exact recurrence of (20) can be written as follows: 

ui+ = E(z)ui + cAtB(z) 

where z = oAt.  
On the other hand, equation (21) is approximated by means of the present integration method as: 

u,+ = E(z)u, + cAtE(z) 

- z 2 + 6  z 2 + 6 z +  12 - - - - ___ - ~i + CAt ~ ~ _ _ _ _ - -  
4z2 + 122 + 12’ 2z2 + 62 + 6 

The functions B(z )  and B”(z), respectively, indicate the characteristics of the present integration 
operator, and that of the approximated contribution of the external function. The variation of 
the approximated functions E(z)  and B(z)  against z = wAt are shown in Figures 2(a) and 2(b) 
in comparison with the exact functions E(z) and B(z), respectively. The function E(z) approaches 
the value of - 1/2 for a large integration interval. The characteristics of conventional single step 
schemes are also plotted in Figure 2(a) for comparison.’ A feature of the present time integration 
formula is that contributions of external functions are evaluated so as to be consistent with the 
accuracy of the integration operator. 

SOLUTION ALGORITHM O F  FINITE ELEMENT NAVIER-STOKES EQUATIONS 

Application of the time integration formula 

Transposing the pressure gradient term K,p and the non-linear term &I of the finite element 
equations of motion (1) to the right-hand side, and treating these terms as external functions, yields 

* 
Mu + Ku = f - K,p - Ku E r, (23) 

where the vectors u and f, respectively, contain prescribed components and unknown ones as 
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denoted in (5a, b). The time integration formula (19a, b) is applied to (23) without removing the 
equations corresponding to the degrees of the nodal reactions fB. By this treatment, it is intended 
to evaluate all components of the nodal accelerations u by means of the present integration 
operator. 

Consequently a set of recurrence equations for a typical time interval from t i  to t i+ ,  are 
obtained as follows: 

where - 
ri = fi - K,pi - Kiui, (25a) 

i7, = R(u,). (25b) 

at  t = t i ,  

On the above recurrence relations (24a, b), the continuity conditions to be satisfied at the 
advanced time instant t = t i+ are clearly written as follows: 

K;ui+ = 0. (26) 
Pre-multiplying (24b) by M-', the velocities ui+  can be formally expressed as 

Substitution of (27) into (26) leads to the following equations: 

-K:M-lK,pi+l = K ; M - l  - ~ i + i u i + l ) - A z l q i  (28) 
At 
3 

Since equations (24a, b) and (28) are still unsolvable, owing to the particular process 
that the unknown components f P  have been intentionally left in the vector f, the following 
procedure is considered to solve these equations. 

Fundamental recurrence equations 

Concerning the notation used in (5a, b), equations (24a, b) and (28) can be partitioned as follows: 

Elimination of the nodal reactions f f+l  from equations (29a-c) is a clue to solve these 
complicated and coupled equations. In equation (29b) the term ff+ is coupled with the unknown 
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velocity components u;+ through the submatrix MP". Considering separation of these terms, 
which is necessary for the elimination of f f + l ,  it is a natural and simple treatment to delete 
off-diagonal terms of the consistent mass matrix M by replacing it with a lumped mass matrix: 

As a consequence of mass lumping, the term f f+ l  can be explicitly expressed as follows: 

and the unknown velocity components us+ are expressed as 

At At +-r:--(K;pi+l 6 3 + K ; + , u ~ + , ) - A ; ~ ( P ~  

Substituting (3Sa) into (29a) and (29c) to eliminate f f+l ,  the following equations are 
derived 

-(K",T(Mg)-lKXpi+l =(K",'(M;))-' -K;+ lu i+ l ) -  A;l(gi + (K!)Tii!+l. 

(3W 
1 At 

3 

Each of equations (32a) and (32b) includes 'pi and pi+ as unknowns. Transposing "pi and pi+ , of 
the right-hand side to the left-hand side and rearranging, yields 

(33) 

Equations (31a, b) and ( 3 3 )  are the fundamental recurrence equations of the proposed solution 
procedure. 
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Solution algorithm 

during one integration step from ti to t i+  
Regarding the non-linear term gi + ui+ I, the following simple iterative procedure is performed 

(i) The right-hand side of (33) is a vector consisting of the known terms at t = ti, the prescribed 
values at t = t i + l  and the non-linear term gi+lui+l at t i+1. At first gi+lui+l is 
approximated in terms of the values at t = ti, namely giui .  

(ii) Then equation (33) can be solved and the first approximations tpi') and pi!+)1 are obtained. 
(iii) The non-linear term gi+ lu i+  of (31a, b) is approximated in terms of the same values that 

have been used in the process (ii). Substituting cpi') and pi!+)l into (31a,b), the first 
approximations of the velocities US!'! and the nodal reactions ffi1l can be obtained. 

(iv) The non-linear terms are updated to g{:)l uiY1. 

The processes (ii) to (iv) are repeated until the following convergence criteria are satisfied: 

where E,, E~ and E~ are preassigned error tolerances. 
On every updated set of velocities, uyj 1, the incompressible continuity conditions (26) have been 

imposed. The system matrix on the left-hand side of (33) is non-symmetric, and rather complicated 
processes are required to assemble this matrix. However, the system matrix may possess a band- 
profile upon appropriate arrangement of the order of the variables in the array (9; pT+ ), to 
which, for example, so-called skyline storage is adoptable. In addition, as far as the integration 
interval At is fixed, only one factorization need be performed. After that, only the forward- 
reduction/back-substitution of the factorized array need be repeated in the present solution 
algorithm. 

NUMERICAL EXAMPLES 

In this section a series of numerical results for flows past a rectangular cylinder of various width-to- 
height ratio B/H ( B  is a side length of a cylinder and H is the height) at different Reynolds numbers 
(Re) are presented in order to verify the features of the proposed procedure. The calculated flow 
fields are compared with experimentally observed ones, which are reported in the l i t e r a t ~ r e . ~ ~ - ' ~  
Three cases of computations were performed: (A) Re = 126 of B/H = 0 (i.e. flat plate), (B) Re = 150 
of B/H = 1 and (C) Re = 300 of B/H = 2. The finite element mesh and the boundary conditions of 
Case (B) are shown in Figure 3(a). At the inlet boundary, uniform velocity distribution U is 
assumed. The outlet boundary is assumed to be traction free. Along the other two boundaries, 
tangential tractions and the normal velocity components are assumed to be zero. The non-slip 
condition is prescribed at the cylinder surfaces. Only the side length B was changed for the other 
two cases. 

Case ( A ) :  evolution of twin vortices behind a p a t  plate 

In Case (A) it is intended to compare the calculated results with the experimental observations 
by Taneda and H ~ n j i . ' ~  Their experiment was carried out in a water tank 40cm wide. A thin 
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'" u=O,v=O on cylinder surface 

Figure 3. Flow past a rectangular cylinder: (a) finite element mesh and boundary conditions; (b) initial path of the inlet 
velocity from 0 to U ;  (c) small perturbation randomly added to the inlet velocity 

test plate (N = 3 cm) immersed in the water was started from rest impulsively at the velocity 
U = 0495 cm/s (the corresponding Reynolds number is 126). The situation examined in the 
experiment was interpreted to the foregoing finite element model (B/H = 0). The initial conditions 
were as follows: 

u=O, f = O  and p = 0 ,  at t=0. (35) 
As the inlet velocities were also zero at t = 0, these were increased from zero to U along the 

curve of Figure 3(b) during the initial 20 steps. All the tolerances E,, E~ and E, of the convergence 
criteria (34a-c), were The integration interval At was 0.5 s (the dimensionless value is 0.0825). 

Since the mesh division and the boundary condition were symmetric, the following linear 
velocity distribution of fairly small amplitude was randomly added to the inlet velocity U as an 
attempt to perturb the symmetry: 

where W denotes the length of inlet boundary (cf. Figure 3(a)). up and uQ are the velocities at 
the corners P and Q, respectively. These are functions of the time t, as shown in Figure 3(c), 
and the magnitude of their peaks was made to be scattered randomly within & 0.005U. 

The calculated time history of the stagnation point is compared with the experimental resultsz4 
in Figure 4(a), where the origin of the time of the calculation, t ,  is appropriately shifted from 
that of the time of the experiment, t e ,  in order to adjust the initial time gap due to the initial 
treatment in the calculation (cf. Figure 3(b)). Distribution of the instantaneous streamlines 
observed in the experiment by means of the aluminium dust method is shown in Figure 4(b), 
which is reproduced by the authors from the photograph in Reference 24. Figures 4(c) and 4(d), 
respectively, show the calculated velocity and pressure field at the time instant nearest to the 
actual instant of the experimental observation (Figure 4(b)). These time instants are indicated 
in Figure 4(a). 
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Figure 5. Typical flow field during a regularly periodic shedding: (a) velocity vectors; (b) dimensionless pressure contours 

After the flow became asymmetric at about t = 600s, the regular periodic shedding began at 
about t = 1000s. As the perturbation was considerably small, the symmetry of the calculated 
flow continued for fairly long time. Figures 5(a) and 5(b) show the velocity and the pressure 
distributions at an instant during a typical periodic shedding cycle. The Strouhal number ( S t )  
was 0.173. A reported experimental value is about 0165.27 Through the present computation 
the velocity divergence between the inlet boundary and the outlet one was only O(U x 
(the computation was executed in double precision). This indicates that the continuity conditions 
are accurately satisfied in the present solution procedure. After the regularly periodic vortex 
shedding was obtained, convergence criteria (34a-c) were satisfied after four iterations per 
integration step. 

Case ( B )  and ( C ) :  f low past a rectangular cylinder 

Cases (B) and (C)  are devoted to comparison with a series of experiments carried out by 
Okajima and Sugitani.2s,26 The initial conditions and the initial treatment of the inlet velocity 
of both cases were the same as Case (A). The integration interval was At* = 0.1, where t*( = t U / H )  
denotes the dimensionless time. 

Case (B) .  After the flow became asymmetric at about t* = 45, a regular periodic shedding 
was attained at about t* = 100. Four iterations per step were needed at this stage. In Figure 6 
the calculated velocity distribution is compared with the instantaneous streamlines observed by 
OkajimaZ5 (reproduced from his photograph by the authors). It can be seen that the vector 
directions correspond to the experimental stream directions even at fairly far positions from the 
cylinder. The evaluated Strouhal number was 0.164, whereas the values reported in the experiment 
were within 0.14-0.145.2s 

The velocity vectors and the pressure contours during a half cycle of shedding are shown in 
Figures 7(a)-(c). In Figures 7(d) and 7(e) variations of the drag coefficient CD, the lift coefficient 
C ,  and non-dimensional pressures p*(  = p / p U 2 )  at each centre of cylinder sides are plotted 
during a typical cycle of periodic shedding. The drag and lift resulted from direct summation 
of the nodal reaction components (fo) on the cylinder surfaces. Therefore, not only the pressure 
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but the viscous stresses contribute to these forces. At the peaks of C, (Figures 7(a) and 7(c)) the 
flows separated at the leading edges and rolled up behind the cylinder. When C, was zero (Figure 
7(b)), a vortex was going to leave the cylinder. The mean value of C, was 1.66 and the peak 
value of C, was 0.43. A reported experimental value of C, is about 1.5.28 The difference of p* 
between the side S, and S, correlated with the variation of C,, whereas variation of p* on the 

Figure 7. Velocity vectors and dimensionless pressure contours near the square cylinder during regularly periodic 
sheddings at Re = 150 (a) at C, = max.; (b) at C, = 0; (c) at C ,  = min.; (d) time histories of the drag and the lift; (e) time 

history of the surface pressures 
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Figure 9. Typical flow fields at Re = 300 of B/H = 2: (a) instantaneous streamlines and streaklines visualized by Okajima 
and Sugitaniz6 (reproduced from their photograph by the authors); (b) velocity vectors; (c) dimensionless pressure contours; 

(d) instantaneous streamlines; (e) vorticity contours 
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back side S, correlated with that of C,. Figure 8 shows typical velocity distribution in overall 
domain, where the sinusoidally oscillating wake is travelling toward the outlet boundary. 

Case (C) .  At Re = 300 the regularity of the oscillation of the wake was slightly fluctuated 
and the calculated peak value of the Strouhal number was 0.170, whereas the experimental value 
was somewhat scattered between 0.15 and 0.17.26 Figure 9(a) is a typical flow field at Re = 300 
visualized by Okajima and Sugitani26 (reproduced from their photograph by the authors), who 
used the aluminium dust method to indicate instantaneous streamlines and the electrolytic 
precipitation method to indicate streaklines. Figures 9(b)-9(e) show corresponding calculated 
velocity vectors, pressure contours, instantaneous streamlines and vorticity contours. 

CONCLUDING REMARKS 

A numerical procedure for unsteady flow problems of viscous incompressible fluids has been 
presented. The proposed solution procedure is outlined as follows. (i) The spatial discretization 
of the Navier-Stokes equations and the continuity equation is performed via the finite element 
method. The ordinary triangular element of linear interpolation is used for the velocity field. 
The pressure is assumed constant in each element. (ii) A unique direct time integration method 
is adopted. (iii) The integration formula is applied to the equations of motion without removing 
the equations corresponding to the degrees of the prescribed velocity components. (iv) After the 
continuity conditions are imposed on the velocities of the recurrence equations of motion, the 
boundary conditions are applied and the nodal reaction components are eliminated. (v) An 
iterative process concerning the non-linear terms is performed at every integration step. 
Excessively artificial techniques are not introduced into the present solution procedure. 

The numerical examples compared to several experimental observations and measurements, 
have shown that (i) the solutions satisfy the incompressibility conditions; (ii) the time-dependent 
solutions agree fairly well with the experimentally visualized flow fields reported in the literature; 
(iii) the fluid forces acting on the obstacles can be predicted in the present calculations. 

The capabilities of the proposed solution procedure depend fairly, but not completely, upon 
the characteristics of the time integration method employed. However, the accuracy of the 
solutions is rather due to the honest treatments of the incompressibility constraint and the 
non-linear terms. Instead, such treatments have led to relatively complicated procedures. Hence, 
there remains much room for improving the computational efficiency of the present procedure, 
by continuing further developments regarding, for example, a more efficient iterative solution 
technique, a solution procedure for large sets of simultaneous equations, and so on. 
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